Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces

نویسندگان

  • Maxim A. Olshanskii
  • Arnold Reusken
چکیده

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations (PDEs) posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time–continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite element spaces consist of traces of standard volumetric elements on a space-time manifold resulting from the evolution of a surface. We prove first order convergence in space and time of the method in an energy norm and second order convergence in a weaker norm. Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in a duality argument used in the proof of the second order convergence estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd, d = 2, 3. The method employs discontinuous piecewise linear in time – continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite ...

متن کامل

A Space-time Fem for Pdes on Evolving Surfaces

The paper studies a finite element method for computing transport and diffusion along evolving surfaces. The method does not require a parametrization of a surface or an extension of a PDE from a surface into a bulk outer domain. The surface and its evolution may be given implicitly, e.g., as the solution of a level set equation. This approach naturally allows a surface to undergo topological c...

متن کامل

Trace Finite Element Methods for PDEs on Surfaces

In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-depe...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria An adaptive octree finite element method for PDEs posed on surfaces

The paper develops a finite element method for partial differential equations posed on hypersurfaces in R , N = 2, 3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014